A Human-Like Approach to Footstep Planning
نویسندگان
چکیده
Terrains in our everyday environment such as homes and offices are custom-designed for biped walkers i.e., human beings. Evolution of humanoid robots was, thus, a natural development in the field of mobile robotics. However, giving legs to a robot instead of wheels gives it a lot more than just resemblance to a human being. Unlike ordinary mobile robots, humanoids have the ability to cross obstacles by stepping over and upon them. This ability is left unexploited if the algorithms used for ordinary mobile robot navigation among obstacles are employed for humanoids too. Various approaches have been adopted in order to address this problem in the past. (McGhee & Iswandhi, 1979) developed a method that divides the terrain into ‘permissible’ and ‘impermissible’ stepping positions. Keeping in view the direction in which the ultimate goal position is located, the robot selects the next foothold from amongst the permissible ones in the immediately reachable footholds while taking care of postural stability constraints. While this method targeted a general application to legged robotics, (Yagi & Lumelsky, 1999) presented another one that deals specifically with humanoid robots. Depending upon the distance with the obstacle nearest to the robot in the direction of motion (presumably the direction in which the goal position is located) the robot adjusts the length of its steps until it reaches the obstacle. Now, if the obstacle is small in size, it is overcome by stepping over or upon it whereas if it is too tall to be overcome in this way, the robot starts sidestepping until it moves clear of the obstacle. Obviously, whether to sidestep left or right is also a pre-programmed decision. These and other such localized reactive approaches have the tendency to lead the robot into a local loop or a deadlock in which case the robot would have to be backtracked in order to follow an alternate path. (Kuffner et al., 2001) argued that since such reactive algorithms failed to consider complexities occurring in the path at a later stage before opting to take it, they ended up stuck in local loops and deadlocks. In order to tackle this problem they presented a footstep planning algorithm based upon game theory that takes into account global positioning of obstacles in the environment. This technique has been tested on H6 (Kuffner et al., 2001), H7 (Kuffner et al., 2003), Asimo Honda (Chestnutt et al., 2005; Michel et al., 2005) and HRP-2 (Michel et al., 2006) humanoid robots with some improvements. The algorithm selects a discrete set of predefined stepping locations in the robot’s immediate vicinity while balancing on one leg only. Also predefined are intermediate postures that the robot assumes while moving its feet between any two of these stepping locations. Selecting a set of these
منابع مشابه
A Human-Like Approach Towards Humanoid Robot Footstep Planning
Humanoid robots posses the unique ability to cross obstacles by stepping over or upon them. However, conventional 2D methods for robot navigation fail to exploit this ability and thus design trajectories only by circumventing obstacles. Recently, global algorithms have been presented that take into account this feature of humanoids. However, due to high computati...
متن کاملEffective Footstep Planning for Humanoids Using Homotopy-Class Guidance
Planning the motion for humanoid robots is a computationally-complex task due to the high dimensionality of the system. Thus, a common approach is to first plan in the low-dimensional space induced by the robot’s feet—a task referred to as footstep planning. This low-dimensional plan is then used to guide the full motion of the robot. One approach that has proven successful in footstep planning...
متن کاملOnline footstep planning for humanoid robots
We present an online algorithm for planning sequences of footstep locations that encode goal-directed navigation strategies for humanoid robots. Planning footsteps is more general than most existing navigation methods designed for wheeled robots, since the options of stepping over or upon obstacles in a cluttered terrain are available. Given a discrete set of plausible footstep locations, a for...
متن کاملA Generalized Mixed-Integer Convex Program for Multilegged Footstep Planning on Uneven Terrain
Robot footstep planning strategies can be divided in two main approaches: discrete searches and continuous optimizations. While discrete searches have been broadly applied, continuous optimizations approaches have been restricted for humanoid platforms. This article introduces a generalized continuous-optimization approach for multilegged footstep planning which can be adapted to different plat...
متن کاملSearch-Based Footstep Planning
Efficient footstep planning for humanoid navigation through cluttered environments is still a challenging problem. Often, obstacles create local minima in the search space, forcing heuristic planners such as A* to expand large areas. Furthermore, planning longer footstep paths often takes a long time to compute. In this work, we introduce and discuss several solutions to these problems. For nav...
متن کاملConvex Segmentation and Mixed-Integer Footstep Planning for a Walking Robot
This work presents a novel formulation of the footstep planning problem as a mixed-integer convex optimization. The footstep planning problem involves choosing a set of footstep locations which a walking robot can follow to safely reach a goal through an environment with obstacles. Rather than attempting to avoid the obstacles, which would require nonconvex constraints, we use integer variables...
متن کامل